
Lecture 15: Talagrand Inequality

Talagrand Inequality



Overview

Today we shall see (without proof) a concentration inequality
called the “Talagrand Inequality”
This result shall help us prove concentration of a large class of
problems around its median
As an application, in the next lecture, we shall see a
concentration result for the longest increasing subsequence
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Convex Distance I

Recall the definition of the Hamming distance between two
elements x , y ∈ Ω := Ω1 ×· · · × Ωn∣∣{i : 1 6 i 6 n and xi 6= yi}

∣∣
Intuitively, we get penalized “1” for every index i where xi and
yi are different

We can consider a weighted variant of this distance where
every index i has its own associated penalty αi

Before we proceed to developing this new notion of distance,
let us first normalize the Hamming distance. Consider the

following redefinition. Let α = (α1, . . . , αn) =
(

1√
n
, . . . , 1√

n

)
.

We define
dH(x , y) =

∑
16i6n : xi 6=yi

αi
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Convex Distance II
For the sake of completeness, we write down the inequality
that we saw on Hamming distance in this new form

P [X ∈ A] · P
[
dH(X,A) > E

]
6 exp(−E 2/2)

Now, we are at a position to generalize the notion of distance
to any vector α with norm 1. That is, consider
α = (α1, . . . , αn) such that

α1, . . . , αn > 0, and∑n
i=1 α

2
i = 1.

We define the following distance between x , y ∈ Ω with
respect to α as follows

dα(x , y) :=
∑

16i6n : xi 6=yi

αi

Intuitively, this captures the fact that every coordinate i could
possibly be penalized differently as compared to other
coordinates.
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Convex Distance III

Now, for a pair x , y we consider the “most severe penalty.”

Definition (Convex Distance)

For x , y ∈ Ω, we define the convex distance between x and y as
follows

dT (x , y) := sup
α : ‖α‖2=1

dα(x , y)

Similar to the case of Hamming distance, we can define the
distance of x ∈ Ω from a set A ⊆ Ω

dT (x ,A) = min
y∈A

dT (a, y)

So, if dT (x ,A) > t, then we have dT (x , y) > t, for all y ∈ A.
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Talagrand Inequality

Let X = (X1, . . . ,Xn) be a random variable over Ω, such that
each Xi is independent of the others and Xi ∈ Ωi

Let f : Ω→ R
Talagrand inequality states that if any A ⊆ Ω is dense, then it
is unlikely that X is far (w.r.t. the dT (·, ·) distance) from A

Theorem (Talagrand Inequality)

For any A ⊆ Ω, we have

P [X ∈ A] · P
[
dT (X,A) > E

]
6 exp(−E 2/4)
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Application: Longest Increasing Subsequence I

Let us first formulate the longest increasing subsequence
problem. Suppose X = (X1, . . . ,Xn), where each Xi is
independent and uniformly distribution over Ωi = [0, 1)

We are interested in f (X), the length of the longest increasing
subsequence in (X1, . . . ,Xn)

Let us try to understand the expected value E
[
f (X)

]
and its

concentration that we can conclude from the previous tools
that we have studied
Note that f is (1, 1, . . . , 1) bounded difference function,
because changing one entry in X can change the longest
increasing subsequence by at most 1. So, we can apply the
independent bounded difference inequality to conclude the
following

P
[
f (X) > E

[
f (X)

]
+ E

]
6 exp(−E 2/n)
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Application: Longest Increasing Subsequence II

Note that the radius of concentration that we obtain from the
inequality is (roughly)

√
n

Although, this result is non-trivial, it is useless. Because we
have E

[
f (X)

]
= Θ(

√
n). Students are highly encouraged to

prove this result

Our objective is to use the Talagrand inequality to prove a
concentration of f (X) around its median m with radius of
concentration

√
m. Note that by the Markov inequality, we

have m 6 2E
[
f (X)

]
, hence, m and E

[
f (X)

]
have the same

order. Therefore, the radius of concentration is Θ(n1/4). Now,
this result is useful
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