


Overview

e Today we shall see (without proof) a concentration inequality
called the “Talagrand Inequality”

@ This result shall help us prove concentration of a large class of
problems around its median

@ As an application, in the next lecture, we shall see a
concentration result for the longest increasing subsequence
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Convex Distance |

@ Recall the definition of the Hamming distance between two
elements x,y € Q1= Q1 x--- x Q,

[{i:1<i<nandx #y}|

@ Intuitively, we get penalized “1" for every index i where x; and
y; are different

@ We can consider a weighted variant of this distance where
every index /i has its own associated penalty «;

o Before we proceed to developing this new notion of distance,
let us first normalize the Hamming distance. Consider the

following redefinition. Let o = (aq,...,ap) = (%, e ﬁ)
We define
du(x,y) = Z Q;j

1<i<n: xi#y;
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Convex Distance I

@ For the sake of completeness, we write down the inequality
that we saw on Hamming distance in this new form

P[X € A]-P [dy(X,A) > E] < exp(—E?/2)

@ Now, we are at a position to generalize the notion of distance
to any vector o with norm 1. That is, consider

a = (ai,...,ap) such that
e a1,...,a, >0, and
o Yilof=1

@ We define the following distance between x, y € Q with
respect to « as follows

da(x,y) = Z Q;

1<i<n: xi#yi

Intuitively, this captures the fact that every coordinate i could
possibly be penalized differently as compared to other

coordinates.
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Convex Distance Il

@ Now, for a pair x, y we consider the “most severe penalty.”

Definition (Convex Distance)

For x, y € Q, we define the convex distance between x and y as
follows

dT(Xa}/) = sup da(x,y)

a: [laf=1

@ Similar to the case of Hamming distance, we can define the
distance of x € Q fromaset AC Q

dT(X7 A) = )r/nelg dT(a7y)

So, if dr(x,A) > t, then we have dr(x,y) > t, for all y € A.
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Talagrand Inequality

o Let X = (Xy,...,X,) be a random variable over Q, such that
each X is independent of the others and X; € Q;
o Lletf:Q2—R

@ Talagrand inequality states that if any A C Q is dense, then it
is unlikely that X is far (w.r.t. the d7(-,-) distance) from A

Theorem (Talagrand Inequality)

For any A C 2, we have

P[X € A]-P [dr(X,A) > E] < exp(—E?/4)
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Application: Longest Increasing Subsequence |

@ Let us first formulate the longest increasing subsequence
problem. Suppose X = (Xy,...,X,), where each X is
independent and uniformly distribution over Q; = [0, 1)

o We are interested in f(X), the length of the longest increasing
subsequence in (Xy,...,X,)

o Let us try to understand the expected value E [f(X)] and its
concentration that we can conclude from the previous tools
that we have studied

o Note that f is (1,1,...,1) bounded difference function,
because changing one entry in X can change the longest
increasing subsequence by at most 1. So, we can apply the
independent bounded difference inequality to conclude the
following

P [f(X) > E[f(X)] + E} < exp(—E2/n)
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Application: Longest Increasing Subsequence |l

Note that the radius of concentration that we obtain from the
inequality is (roughly) \/n

@ Although, this result is non-trivial, it is useless. Because we
have E [f(X)] = ©(y/n). Students are highly encouraged to
prove this result

@ Our objective is to use the Talagrand inequality to prove a
concentration of f(X) around its median m with radius of
concentration /m. Note that by the Markov inequality, we
have m < 2E [£(X)], hence, m and E [f(X)] have the same
order. Therefore, the radius of concentration is @(n1/4). Now,
this result is useful
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